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A small angle intensity is to be expected from double reflections in any powder sample comprising 
small grains with random orientation. The inter-grain contribution is due to an hlcl reflection in one 
grain, followed by the same hkl reflection in another grain. The intra-grain contribution arises from 
a hlcl reflection followed by a h-kl reflection in the same grain. The inter-grain intensity is independent 
of grain size and falls off inversely as the scattering angle. The intra-grain intensity depends upon 
grain size, and fails off rapidly with scattering angle. Equations are obtained for both types of con- 
tribution. Cold work in a sample breaks up the original grains into small sub-grains with a small 
variation in orientation. The enhanced inter-grain contribution from these groups of sub-grains can 
produce a strong small angle scattering. 

1. Introduction 

A small angle X-ray scattering from cold worked 
metals has been observed by Blin & Guinier (1953). 
It was suggested by Beeman (1957) that the small 
angle intensities could be due to double Bragg reflec- 
tions in the powder sample. To be able to discuss 
quantitatively the effect of cold work on small angle 
intensities, it is important to first develop a general 
theory of the small angle intensity due to double Bragg 
reflections which is to be expected from any powder 
sample. 

We consider that the primary beam is normal to a 
thin sheet of polygrained sample, in which the grain 
orientations are random, and the grains small enough 
so that any beam traverses a large number of grains. 
Two kinds of double Bragg reflections can contribute 
to a small angle intensity. Inter-grain scattering con- 
sists of an hlcl reflection from one grain, followed by 
the same hlcl reflection in a second suitably oriented 
grain. Intra-grain scattering involves an hkl reflection 
followed by a /;kl reflection in the same grain. We 
consider first the inter-grain contribution. 

2. Inter-grain scattering 

The diffraction conditions are i l lustrated by  :Fig. 1. 
The tota l  diffracted power for a reflection hkl from a 
volume element d V1 is given by :  

dP1 = IoKi d V1 (1) 
where 

K~= {e4/(m2c4)} {28mF2/(4v~ sin 0d} (2) 

m is the multiplici ty,  F the s t ructure  factor,  Va the  
unit-cell volume and 0~ the  Bragg angle for the reflec- 
t ion hkl. We omit  a Debye  t empera tu re  factor  since 
the  main  contr ibut ion comes from low order reflec- 
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Fig. 1. The volume elements involved in inter-grain 
scattering in a thin sheet. 

tions. The proper  polarizat ion factor  for a double 
reflection is pu t  in a t  the  end. 

I t  is convenient to represent  the  power dP1 as an  
intensi ty  dis t r ibuted uniformly between cones 2 0i and  
20,+A(20d.  

dI,=dPl/(27rC sin 20~A(20d) . 

Let  dP2 be the  to ta l  diffracted power in the  
reflection hkl from the ring shaped volume d V2= 
2~rr 2 sin 20,A (2 0,) dr i r radia ted  by dlr. 

dP2 = dlrKi d V2 = IoK~ d V1 dr.  (3) 

Fig. 2 represents the  concave spherical receiving 
surface a t  distance R from the sample. The inter- 
section of the  p r imary  beam is a t  0, and the  circle 
CC is the  intersection of the  first  diffracted cone from 
volume d V1. Each  point  on circle CC is the  center of 
another  circle DD represent ing the  second cone of 
diffracted radiat ion.  Tha t  pa r t  of dP2 which falls in 
the region between circles B and B '  is dP22da/2zr, 
and this is the  small angle in tensi ty  between cones 
2 0 and 2 0 + d(2 0) hence 

dP22da/2Jr = dI2o2JrR ~ sin 2 0 d(2 0) . 
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Since 
d(2 O) = (ds sin A)/R 

and 
ds = 2gR sin 20~d~/2~ 

we obtain for the small angle intensity 

dleo= dP2/{2~2R 2 sin 2 0 sin 2 0~ sin A}.  (4) 
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Fig.  2. I n t e r s ec t i on  of the  d i f f rac t ion  cones wi th  the  concave  
receiving surface a t  d is tance  R f rom the  sample.  

:From the spherical triangle of sides 20i, 2 0t and 20 
we obtain cos A = t a n  0 ctn 20~. Combining this with 
equations (3) and (4), the small angle intensity be- 
comes 

dI2o=IoK~dV~dr/{4~reR ~ sin 0 (sin e 20~-s in  2 0)½}. (5) 

For 20~<90 °, the path length in the sample is 
t+2rsin20~, and the absorption factor becomes 
exp [ - # ( t + 2 r  sin e 0i)]. The integration with respect 
to r between limits r=O and r=(t-x) /cos  20i, is 
readily performed. We now set dVl=adx, Po=Ioa 
and in the square root we drop sin e 0 as negligible 
compared to sin e 2 0i since we are only concerned with 
small angle intensities. The intensity of small angle 
scattering is given by 

PoK~ exp [-~t] 
Ie°= 8~r~#R e sin 0 sin e 0i sin 2 0i 

x 1 - e x p  - 2 # ( t - x )  20~jjdx.  (6) 

The integration with respect to x is readily performed. 
I t  is easily shown tha t  the expression obtained applies 
equally well for 2 0~ <90 ° and 2 0~> 90 ° if cos 2 01 is re- 
placed by its magnitude Icos 20il. Adding the proper 
polarization factor for a double reflection, the small 
angle intensity due to a reflection (hkl)~ is given by 

120 

where 

PoKer exp [ -  #t] (1 + cos 4 2 0i) 
16~r~'/~R e sin 0 sin e 0i sin 2 0i 

l 1 _  ( 1 -  exp [ -  g~ g'])} X i (7) 

g~=2#t sin e 0i/Icos 20il • (8) 
I t  is convenient to express the result in terms of a 

diffuse intensity in electron units per "atom I(eua). 
In  terms of I(eua) and the volume per atom v0, we 
can express the small angle intensity by 

e4 (l + c°se 20) I(eua) atexp [ -# t ]  (9) 
12o = Io m2 c4Re 2 Vo " 

Equating (7) and (9), introducing Ki from equation (2) 
and summing over all h]cl reflections, we express 
I(eua) in terms of the scattering angle (20 °) in degrees. 

1 ( e4 ) 45)-%0 
I(eua) = ( - - ~  m~c4 32~r3v~# 

_meF4(,+cos4200 / (]--expE--g~])} 
x ~ ~ . . . . . .  1 - . (lO) 

i sin 0i sin 2 0i gi 

The summation over i is performed over all hkl up 
to sin 0 i= 1. The small angle intensity due to inter- 
grain multiple scattering falls off inversely as (20°). 

3. Intra-grain scattering 
We formulate the problem in terms of a simple re- 
stricted case, and later generalize it. We consider a 
001 reflection in a cubic crystal containing one atom 
per cell. Referring to Fig. 3, the horizontal lines are 
001 planes and the a3 vector is vertical. Unit vectors 
so, s, and s '  represent the directions of the pr imary 
beam, the first reflected beam, and the final reflected 
beam. Wave fronts OI and OF perpendicular to the 
primary and final reflected beams are drawn through 
the crystal origin 0. The first reflection takes place 

m 3 

S O ~.~' 

/ \ 

S' 0 

Fig. 3. Double  001 ref lect ion in a single grain.  The  001 planes 
are hor izonta l  and  the  a 3 axis is ver t ical .  The  h e a v y  lines 
r ep resen t  the  pa t h  be tween  an init ial  wave  f ron t  OI and  
a final wave  f ron t  OF. 
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from the m~ layer, and the second reflection from the 
atom at position Rm = mini-t- m~as + msa3. The path 
travelled between the two wave fronts is 

Path = p. So + s. (Rm-  p ) -  s ' .  R~ 
= - ( s -  So). p -  ( s ' -  s ) .  R ~ .  

The primary and first reflected beams each make 
angles 0i+c~ with the 001 planes, hence ( s - s 0 ) . p =  

t (s - So). m3a3. 
If E0 is the amplitude of the primary beam, E the 

amplitude of the first reflected beam from the layer 
! 

m3, and n the number of atoms per unit area in the 
plane, the usual Fresnel zone treatment gives 

E = EoeSfn2/(mc ~ sin 0t). (11) 

The simplicity of this form results from the fact that  
we are considering E at a distance r from the plane 
m~ which is small compared to the distance r0 between 
the plane m~ and the X-ray source, and hence the r 
dependence of the zone area cancels the 1/r depen- 
dence of the amplitude per atom. The amplitude of 
the first reflected beam acting on the atom at R~ is 
obtained by summing over all layers m~ from m~ = 0 
to m~=m3-1 .  In doing this, we make the approx- 
imation that  all positions in the layer m3 receive con- 
tributions from all the layers below it. This approx- 
imation is bad for reflections at small 0,, and it could 
easily result in over-estimating the intra-grain in- 
tensity by a factor of 4. If E '  is the amplitude in the 
second reflected beam at a distance R from the crystal, 
E '  is obtained by summing the scattering from each 
atom at Rm over the whole crystal excluding the zero 
layer. Since we are considering directions s '  which 
differ a little from the original directions So, we can 
neglect the usual ~/2 and g jumps in phase. The 
amplitude of the final reflected beam is given by 

E' E eP f m'3=m3--1 

m l m  2m 3 m" 3=0  

x exp - ~--  .m~a~ . 

We are interested in a direction s' which differs by 
a small fixed amount from so, so we set s ' = s 0 + A ,  
where A is a vector perpendicular to so and of magni- 
tude IA1=20°~/180. But ( s ' - s ) . a l = A . a l  since 
( s -  so). al = 0. Approximating each layer by a disk of 
radius ~, the summations over mt and m2 can be 
expressed as an integral 

~7 exp [ 2~i ] 
mlm~ -- -~-- A. (mlal + m2a2) 

= -- exp -- lair sin cos rdcpdr 

= (LS/a ~) (2J~(x)/x) (13) 

where 
x = ~/22 O°L sin ?/(902). 

The disk area ~ 2  has been equated to L 2 where L is 
an average grain dimension, and y is the angle be- 
tween A and as. 

In equation (12) replace E by its value from equation 
(11). Multiplying by the complex conjugate, and in- 
troducing the abbreviation 

G= Io{e4 f2n2/(m2c4R sin 0~)} s {L4/a 4} {2Jl(x)/x} 2 (14) 

we obtain I~ the intensity of the final reflected beam 
from one crystal. 

N3--1 m3--1 -~'3--1 n3--1 [ 2 ; i  
I ~ - G  ~ Z 2 2 exp 

m3=l  m'3=0 n3=1 n'3=0 

, , }] x {(s - -s0) . (m3-ma--na+na)as-A.(ms--na)as  . 

(151 
If 21/is the number of crystals in the sample, and 

m is the hkl multiplicity, the number of crystals for 
which the primary beam makes angles with the (001) 
planes between 0 i + a  and 0~+a+d~  is given by 
d N = M m  cos Oida/2. For the powder sample, the 
intensity I '(A) in a direction differing from the 
primary beam by an amount A, is obtained from 

I ' (A)=½Mm cos 0~ I I~da. (16) 

From the Fresnel zone concept, s and so make equal 
angles with the diffracting planes, hence the diffrac- 
tion vector ( s - s0 ) /2  is parallel to bs and in the 
vicinity of a 001 reflection can be expressed by 

Is--s°--[ = (l+h~)iba] = 2 sin (0~+c~)/2 (17) 

]b31 dh~ =2 cos O~da/2. 

The integration with respect to d~ is replaced by an 
integration with respect to dh~, and to include every- 
thing belonging to the reflection 001 we integrate from ! 
h3 = -½ to h3 = + ½. 

I ] exp ( s - so ) .  (ms-m3-ns+n3)a3  &x 

21b81 I +½ -- e x p [ 2 ~ i ( m a - m ~ - n s +  n~)h~]dh~. (18) 
2 cos 0~ _½ 

Combining equations (15), (16) and (18) we can write 

I'(z]) = MmG2Jb3] 2V3--1~ m3--1.~ ~3--1~ n3--1 

4 m3= 1 m,3= 0 n 3 = l  n,3= 0 

~[ (ma-m£) - (na -n~) ]  -- T A. (ms-ns)a8 . 

(19) 

Introduce the new summation indices j = m 3 - m ~  
! 

and k = ns-n3.  The summations m3 from 1 to N 3 - 1  
t 

and ma from 0 to m a - I  cover a triangular area in 
the ms, m~ plane. All points on a 45 ° line have a con- 
stant value for m3-ma. The area can equally well be 
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covered by  a summat ion  over 45 ° lines and points 
on each line. Hence we can make the replacement  

~va-1 ms-1 ~va-1 ,va-1 

m 3 = 1  m ' 3 = 0  ] = 1  m3=] 

and in terms of the new indices, equation (19) becomes 

I'(/1)=MmG2]b~[~v~-12 2 2 2~v~-l~v~-~va-1 

4 ~ = 1  m 3 =  ~ k = l  n3=k 

sin ~ (j - k ) [ 2 ~i ] 
× e x p  - -  A . ( m ~ - - n ~ ) a ~  . (20)  

~ ( j - k ) ---ff 

Since all terms are zero except for j = k, this reduces 
to the triple sum 

4 ]=1 ma=/ 

x e x p  - ~ - & . a ~ m 3  ~" exp A.a~n  . 
n 3 = ] 

The sums over ma and na are readi ly  evaluated and 
we obta in  

I'([J) MmG]tlb8l~.,~-l [ .1 -c°s  (27~/A)A.aa(Na-j)] 
= 4 j " 

(21) 

Wi th  the abbrevia t ion s = 2:rA. a~/X, the summat ion  
in equation (21) is readily evaluated.  

.va-1 1 -- cos ( N 3 - j ) e  
~=1 1 - cos 

[Na ½-- sin (N~-{)~]  1 
~ 7- 

S i n  s 2 sin ~ e/2 

Replacing (N~ - ½) by  N3, making  the approximat ion 
tha t  s is small, and  adding a polarization factor and 
an  absorption factor, we obtain 

MmG~'b~' ( l  +c°s4 20~) exp [_  ttt]NaaqS(z) 
r ( / 1 )  = 12 2 

(22) 

where ~ (z) = ~ 

and 
z = ~22 0°L  cos  7 / ( 9 0 , ~ ) ,  

The funct ion ~(z) is defined so tha t  ~ ( 0 ) =  1.0, and 
), is the angle between A and a3. 

The small  angle scattering can also be expressed in 
terms of a diffuse in tens i ty  I(eua) in electron units 
per atom. 

e 4 (1 +cos2 20) 
1'(/1) = IOm~ c4R 2 2 

x I(eua) M N  3 v~ exp [ -  #t] . (23) 
v0 

The number  of crystals is M, the number  of uni t  cells 
per crystal  is N 3, and  (va/vo) the  number  of atoms per 
cell is included to cover the case where the cell contains 
more than  one atom. Equat ing  (22) and (23) and le t t ing 
N1 = N2 = 1V8 = N, I b3I = 1/a, n = 1/a 2 and Va = a ~, we 
obtain the small  angle in tens i ty  in electron units  per 
a tom 

I(eua) = ~-c4 -~--v~ [ sin~ 0i 

2J l (x)  2 , ,  
x [ - x - ] ~ b ( z  , .  (24) 

To generalize for a crystal containing more than  one 
atom per cell, we replace f by  the cell s tructure factor 
F,  and recognize tha t  v0 the volume per atom and va 
the cell volume are no longer equal. Equat ion  (24) 
gives the contr ibut ion from one reflection, and we 
mus t  now sum over all possible hkl reflections. The 
f inal  equations for the intra-grain contr ibut ion are: 

( e4 )~3voL  4 m~F~(l+cos420i)  
= 2 o t  

x ¢(z) (25) 

where 
x = ~/22 O°L sin y/(90X) 

z = ~220°L cos ~,/(90X). 

If  ~ is an angle of az imuth  in the receiving plane 
normal  to the p r imary  beam 

cos y = cos 0i cos ~ (26) 

and  hence x and  z are functions of the reflection i 
and the az imuth  angle ~. :For a powder pa t te rn  it  is 
necessary to average I(eua) from equat ion (25) over 
all values of q9 and hence a rigorous evaluat ion would 
be very  tedious. However one or two reflections usual ly  
contribute more than  all the others combined, for 
example,  the (111) reflection in a FCC metal.  Hence 
for the FCC case we use 0 m  in equation (26) and take 
[2Jl(x)/x]2¢(z) outside of the summat ion.  In  te rms 
of the variable (20°L/~),  an average value of 
[2Jl(x)/x]2¢(z) is obtained by  averaging over 10 ° 
intervals  in 9 throughout  one quadrant .  

I t  is possible to reduce equat ion (25) to a much  
simpler approximate  expression by  representing 
[2J1 (x)/x]2 and ~b(z) as Gaussian functions ma tched  
at the half  m a x i m u m  height.  If  in addit ion we use an  
average value in the exponent,  

<cos2 r>=<cos2 cos2 0i=0.5 cos2 0i, 

we obtain 

x exp[ - (1 -O .2Ocos20~) (L20°~  2] (27) 
\31.3;~] J" 
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Although equation (27) is much simpler for purposes 
of computations, the tails of the curves are cut off 
more sharply than they should be, as is usually the 
case when Gaussian approximations are used. 

4. D i s c u s s i o n  

To illustrate the magnitude of the small angle in- 
tensi ty to be expected from multiple scattering in any 
powder sample, we take the specific case of a copper 
sample using Co Kc~ radiation. The sums of equations 
(10) and (25) include the reflections 111,200, 220, 311, 
222 and 400. The results are presented in Fig. 4. 
The inter-grain contribution from equation (10) is 
shown by the dashed lines for sample thicknesses 
t= l / / z ,  t=2 /# ,  and t---3/#. The intra-grain contribu- 
tion from equation (25) is shown for a series of grain 
sizes from L = 5 0  A to L = 8 0 0  A. For a scattering 

400Lj eud I I 1 ~  I I I J 
300 

200 Cu CoKa 
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4 1 I I I 2°° 
0 0.25 0.50 0.75 1.00 1.25 1.50 

Fig. 4. The intensity in electron units per atom of small angle 
scattering due to double Bragg reflections in a sample of 
polygrained copper using Co K a  radiation. The dashed lines 
represent inter-grain scattering and the full lines represent 
intra-grain scattering for several grain sizes. 

angle 20°= 1 degree, and a sample thickness t---2/#, 
the inter-grain intensity is 40 electron units per atom. 
Although small, this intensity is large enough to 
measure with s tandard small angle scattering appara- 
tus. I t  is of the same order of magnitude as the abso- 
lute values obtained from cold worked and annealed 
nickel by Blin & Guinier (1953). 

When a metal is cold worked, there is a considerable 
increase in the small angle intensity in the angular 
range of one or two degrees. This can be par t ly  due 
to a reduction in grain size and introduction of strains 
extending the intra-grain contribution out to larger 
angles. I t  can also be due to cold work breaking up 
the larger grains into small sub-grains with slightly 
varying orientations. This can produce a large increase 
in the inter-grain contribution, since the first reflected 
beam now has a much higher probabili ty of meeting 
suitably oriented grains for the second reflection than 
was the case for a sample in which neighboring grains 
have a completely random orientation. Presumably it 
is the second effect which is of importance in the small 
angle intensities produced by cold work. The theory 
of this enhanced inter-grain contribution resulting 
from cold work has been treated by Nickel, 0gier & 
Wild (1959). 

The intensity distribution in the small angle scat- 
tering depends strongly on the correlation in orienta- 
tion of the fragments or sub-grains produced by cold 
work. Hence small angle scattering measurements 
offer the possibility for obtaining information about 
the correlation in orientation of the fragments or 
sub-grains, a kind of information not obtainable from 
line broadening measurements. 

I t  is a pleasure to acknowledge stimulating discus- 
sions with Drs A. Franks and V. Gerold, and to thank 
Dr R. L. Wild for making available in advance a paper 
on this subject. 
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